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This paper proposes a fracture theory for two-phase glass-crystal composites. It is 
hypothesized that the fracture mechanisms of such solids consist of the processes of 
crack nucleation and of crack propagation round the dispersed particles. At lower volume 
fractions of dispersed phase, macroscopic fracture will occur as a result of the growth of 
the micro-cracks originating in the vicinity of the pre-existing structural imperfections 
through a heterogeneous nucleation process; in this case, strength decreases with the 
proportion of the dispersed phase. At higher volume fractions where further crack 
propagation is prohibited by the hard crystalline particles, the process of crack 
propagation round the dispersed particles may be responsible for the macroscopic fracture 
of the composite; in this case, strength is an increasing function of the volume fraction. 
Expressions are formulated for mechanical strength of the glass-crystal composites, based 
upon the nucleation theory and Griffith's criterion. The published data on the strength of 
glass-alumina composites are used for the verification of the theory. The proposed theory 
explains well the strength behaviour of glass-alumina composites, and in particular, the 
dependence of the strength reduction on particle size at lower volume fractions. 

1. Introduction 
Numerous ceramic materials consist of a 
dispersed crystalline phase embedded in a glassy 
matrix. One can therefore regard them as 
composite materials of dispersion type. The 
properties of composite materials depend upon 
not only the properties of the individual phases, 
but also their physical and chemical interactions. 

The strength of glass-crystal composites has 
long been studied by several investigators. 
Experimental data have been published for 
mechanical strength of such solids, including 
glass-alumina [1-4], glass-zirconia [1, 4, 5], 
glass-thoria [6] and so on. Theoretical work was 
done by Hasselman and Fulrath [2] to analyse 
the effects of particle size and volume fraction of 
the crystalline phase on mechanical strength of 
glass-crystal composites free of internal stresses. 
They hypothesized that hard crystalline particles 
dispersed within the glass matrix will limit the 
size of the Griffith flaws, and strengthen the 
composite. Based upon this criterion, they 
derived the expressions for mechanical strength 
of glass-crystal composites as below; 

cr = ~0(1 -- q~)-1/2 (1) 

�9 1972 Chapman and Hall Ltd. 

for Iower volume fractions or larger particle 
sizes at which the flaw size is smaller than the 
average distance between particles, and 

o = [37 Er - r (2) 

for higher volume fractions or smaller particle 
sizes at which the average flaw size is governed 
by the average distance between particles. Here, 

is the fracture strength of the composite, ~0 the 
fracture strength of glass matrix, R the radius of a 
crystalline particle, r the volume fraction of 
dispersed particles, E and 7 the Young's 
modulus and surface energy of the glass matrix, 
respectively. They interpreted their experimental 
results on glass-alumina composites, using their 
derived expressions. They obtained good agree- 
ment with their theory in the region of smaller 
mean distances between particles. In the region 
of larger mean distances, however, the depen- 
dence of the strength reduction on particle size 
was found. They attributed this deviation from 
their theory to the stress concentration due to 
differences in elastic properties of the two phases. 

This paper is concerned with the effects of 
particle size and volume fraction of the crystal- 
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line oxide phase on mechanical strength of two- 
phase glass-crystal composites. A fracture theory 
is proposed for a model glass-crystal system, and 
expressions are formulated for mechanical 
strength of such solids, based upon the nucle- 
ation theory [7-10] and Griffith's criterion. The 
theory will explain well the strength reduction 
depending upon the particle size in the region of 
lower volume fractions. 

2. Proposed theory 
2.1. General considerations 
The fracture mechanisms of glass-crystal compo- 
sites are assumed to be composed of two 
processes: the process of crack nucleation and the 
process of crack propagation round the dispersed 
particles. 

In general, when increasing tensile stress is 
applied to a glass-crystal composite, the micro- 
cracks will first originate at the weaker sites in the 
system through a heterogeneous nucleation 
process. In the glass-crystal system where hard 
crystalline particles are embedded in a glass 
matrix, the weaker sites are assumed to lie in the 
matrix region close to the glass-crystal interface, 
in which structural imperfections may be highly 
concentrated, and macroscopic stress concentra- 
tions may rise because of differences in elastic 
properties of the two phases. The micro-cracks 
will originate in the vicinity of the apex of the 
structural imperfections such as pre-existing sub- 
micro-cracks (Griffith flaws) which are regarded 
as the origins of initiating nuclei of critical size. 
Taking into account the stress-concentration 
factor, one may establish the rate of crack 
nucleation. In the region of larger mean distances 
between particles (e.g. lower volume fractions), 
these micro-cracks grow spontaneously in the 
glass matrix immediately after the crack forma- 
tion and result in the macroscopic fracture of the 
composite. On the other hand, in the region of 
smaller mean distances between particles (higher 
volume fractions) where further crack propaga- 
tion is prohibited by the crystalline particles, the 
micro-cracks formed by the crack-nucleation 
process may cease to grow further after they 
have grown to the size of the mean distance 
between particles. After some increase in the 
applied tensile stress, these cracks may propagate 
round the dispersed particles by a process 
involving a high surface energy in the crack, 
which leads to ultimate rupture of the composite. 

In Fig. 1, these hypotheses are schematically 
illustrated. In the present work, we define 
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Figure 1 Proposed fracture mechanisms of glass-crystal 
composites. 

"crack-nucleation process" as a process in which 
a certain number of micro-cracks nucleate 
individually at the matrix region between 
particles (change from A to C in Fig. 1). We also 
define "high-energy crack-propagation process" 
as a process in which the isolated micro-cracks 
formed by the crack-nucleation process,, propa- 
gate round the dispersed particles (change from 
C to D in Fig. 1). 

On the basis of the above considerations, 
expressions will be derived for mechanical 
strength of glass-crystal composites. 

2.2. Macroscopic and microscopic stress 
concentrations 

The macroscopic stress concentrations due to 
differences in elastic properties have been 
considered by Hasselman and Fulrath [3, 12]. 
The term, "macroscopic stress concentration" 
which will be used hereafter corresponds to 
"micro-mechanical stress concentration" accord- 
ing to their terminology. As being pointed out by 
them, Goodier's solutions [11] for the stress 
concentrations around a circular inclusion in a 
flat plate may give the best approximation to the 
stress condition around the dispersed particles in 
the specimen surface. Maximum stress occurs at 
the interface between matrix and circular 
inclusion. Under condition of  a tensile load, if the 
elastic modulus of the inclusion is higher than 
that of surrounding matrix, tensile stresses 
greater than the applied stress occur for the 
radial component of the stress. When Young's 
modulus of the inclusion is about five times 
higher than that of the surrounding matrix (e.g. 
glass-alumina system), the maximum stress- 
concentration factor is about 1.4. This occurs at 
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two points on the perimeter of the inclusion for 
the uniaxial tension case, and on the whole 
perimeter of the inclusion for the biaxial tension 
case. 

There are other stress concentrations than 
macroscopic stress concentrations mentioned 
above.The microscopic stress concentrations may 
arise in the vicinity of various structural imper- 
fections (pre-existing sub-micro-cracks or other 
structural defects) which are supposedly present 
throughout the specimen surface or volume. 
These structural imperfections play an important 
role in the crack initiation, and they are assumed 
to be the origins of the crack nuclei (preferred 
nucleation sites). This type of stress concentra- 
tion is usually characterized in terms of flaw 
size existing within the material (i.e. Griffith 
flaw). 

2.3. Expressions for mechanical strength of 
glass-crystal composites 

2.3.1. The model 
The model used for this study consists of 
spherical crystalline particles of uniform radius, 
statistically embedded in a glass matrix of 
similar thermal expansion. The similarity of 
thermal expansions makes it possible to neglect 
macroscopic internal stresses set up during the 
cooling of composites. 

2.3.2. Fundamental assumptions in the 
mathematical analyses 

To simplify the problem, mathematical analyses 
were performed under the following conditions 
and assumptions. (1) Increasing tensile stress is 
applied with constant rate to a glass-crystal 
composite. (2) Young's modulus of dispersed 
phase is much higher than that of the glass 
matrix. (3) The matrix region close to the glass- 
crystal interface may be highly subjected to 
microscopic stress concentrations as well as 
macroscopic ones. We call this region an inter- 
mediate phase. (4) The nucleation and propaga- 
tion of micro-cracks in the specimen surface 
should be considered, since a fracture generally 
initiates at the specimen surface, and high stress 
gradients away from the surface are imposed in a 
bend test usually used. (5) The micro-cracks 
formed by the crack nucleation grow spontane- 
ously in the glass matrix, unless the further 
crack propagation is prohibited by the crystalline 
particles. (6) The initiation of a single crack 
nucleus is regarded as rate-determining in the 
nucleation process. This corresponds to the 

change from A to B in Fig. 1. But it seems that the 
crack propagation round the dispersed particles 
begins when a certain number of nucleated 
micro-cracks exist in the matrix between 
particles (C in Fig. 1). Strictly speaking, some 
increase in stress is necessary for the formation 
of a certain number of micro-cracks, after 
initiation of the single crack (change from B to C 
in Fig. 1). It seems, however, that after the single 
crack formation, the fracture probability in a 
region containing the nucleated crack may 
increase considerably. In our mathematical 
treatment, as a first approximation, it is assumed 
that sufficient number of micro-cracks for the 
beginning of the crack propagation round the 
dispersed particles initiate immediately after the 
single crack formation. (7) Although the stress 
concentration should be characterized by distribu- 
tion function, an average value of the stress- 
concentration factor will be used in this paper. 

2.3.3. Crack-nucleation process 
We assume that the rate of formation of crack 
nuclei in the glass-crystal system is given by 

/system = dn /d t  = I m + I i + Ig .  

Here, n is the number of nuclei and t is the time. 
I is the rate of formation of crack nuclei; 
subscripts m, i and g refer to the matrix, inter- 
mediate phase around a dispersed particle and 
dispersed crystalline phase, respectively. These 
subscripts will be used throughout this paper. In 
general, crystalline oxides have higher strengths 
than the glass matrix, so Ig may be neglected as 
compared with the other two terms. 
Then, 

/system =[m + I i '  (3) 

According to Fisher and others [7-10], the rate 
of crack nucleation in the matrix and inter- 
mediate phase are, respectively. 

[m = Z r n ( k T / h ) e x p [ -  (Afro* -t- AFro* -- Wm)/kT ] 
and 

Ii = Z i ( k T / h )  exp[ -  (Aft* + AFi* -- wi) /kr l ,  

where Z is the total number of molecules which 
are subjected to the nucleation, k the Boltzmann's 
constant, h the Planck's constant, T the absolute 
temperature, A f *  the free energy of activation for 
separating a pair of atoms as the edge of the 
crack moves between them, AF*  the maximum 
free energy necessary for nucleus formation and 
w the elastic energy contribution to A f * .  In the 
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case of  fo rmat ion  of  a circular crack, AFm* and 
AFi* are, respectively (see Appendix  I), 

AF,,* = ,~  ~,m" E,,V6(1 - I'm~) ~ Sm ' 
and 

AFt* = 7r 3 r i  3 E~2/6(1 - I'i2) 2 Si 4 , 

where y is m e  surface energy, E the Young ' s  
modulus,  I" the Poisson 's  ratio, S the stress in the 
direction normal  to the plane of  the crack. Wm 
and wi are given by 

W m = V m SmZ/2Em 
and 

w i = v i S i2/2Ei ,  

respectively. Here,  v is the effective volume of  the 
vacancy created by the separat ion of  a pair  of  
a toms.  Under  condit ion of  constant  rate loading, 
the applied tensile stress cr in t ime t is rt, where r 
is the loading rate. We take qm and qi as the 
average combined  stress-concentrat ion factors  
for  bo th  phases. The value of  q is assumed to be 
the produc t  o f  microscopic  and macroscopic  
stress-concentrat ion factors:  the one due to 
structural  imperfections,  and the other  due to 
differences in elastic propert ies  between matr ix  
and dispersed phase. 
Sm and S i are then given by 

Sm = q m  ~ = q m  r; 
and 

Si = ql cr = qi r t .  (4) 

Using Equat ions 3 and 4, we obtain  the equat ion 
for  the rate of  fo rmat ion  of  crack nuclei in the 
system, 

dn k T  
/system = ~-~ = Zm 

Afro. 7r 3 ~m a Em 2 
exp k T  6(1 - I'mz) z kTqm ~ r ~ t ~ 

Vmqm ~ r z t ~1 k T  
q- 2E m k T  J + Z i ' - f f  

Afi .  ~r ~ ),i s Ei ~ 
exp k T  6(1 - vi~) ~ k T q i  ~ r ~ t ~ 

@ Vi qi 2 r ~ t ~1 
~ j  �9 (5) 

2E~ 

As (r is given by rt, Equat ion  5 is writ ten as 

k T  
dn = Zm yh  

Afro* ~r ~ ~m 3 Em ~ 
exp - -  k T  6(1 - v~,z) ~ k T q m  ~ ~r ~ + 
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 -qm"d kT 
2E m kT.]  d e  + Z i  -~ 

All* 7r 3yi a El ~ 
exp --  k T  6(1 - vi2) ~ k T q i  4 cr ~ 

+ 2Ei k r J  d ~ .  (6) 

We hypothesize that  the initiation of  one micro-  
crack is the rate-determining in the crack- 
nucleation process. The integrat ion of  Equat ion  
6 leads to the equat ion for  the fracture stress, ~1 
corresponding to the nucleation of  one micro-  
crack per specimen surface. Tha t  is, 

k r   fm* 1 
f 2 d n = Z m ~ f f e x p  [ - k T  j ~ 1 

Tg3 ~m 3 Em 2 Vm qm2 ~2] 
exp - 6(1 - krqm + -s 

k T  

[ = 3 7 7 e ?   q?2] 
exp - -  6(1 --vi2--~T-q~ 4 er a + 2E~ kTJ  d ~ .  

. . . . .  (7) 

The  integrals which appear  in the r ight-hand side 
of  Equat ion  7 can not  be analytically evaluated. 
But it is possible to obta in  approx imate  integra- 
tions as shown in Appendix  II.  Hence,  it follows 
f rom Equat ion  7 that  

k T  [ Aim*] [ 77"3 ~m3 Ern 3 1 -Bin213 

1 = Z~6-H'hexp . - -  k T  ] L3(1 - Vm~) ~ VmJ 

+ Z i ~-~ exp - -  

[ 7r~,i3Eia l-Bm~'~ { ~6B7'~+I 
3 6 -- v-~vj \ ~ l q , )  (8) 

where 
B m = (urn/hE m k r )  [77 -3 ~m 3 Em2/6(1 --  l,'m2) 2 k r ]  1/2 

and 

B i = (v i /2E i k T )  [Tr 3 yi 3 Ei~/6(1 - viZ) z kT]  1/2 . 

We consider the case where the physical 
propert ies  of  the intermediate phase are not  very 
different f rom those of  the matrix. IfAf~* _ Afro* , 

Yl ~'~ 7m, Vi ~--- I'm, El ~ E m  and v i - % are valid, 
Equat ion  8 becomes 

k T  [ Af~*] 
(Zmqm6Bm2'3+t + Zjqi6Bm2la+l) 

6 r r h e X p ~ -  k T  ] 

[ ~ZZm3EmZ - ] - B i n  2/3 
3(1 - v,~) ~ Vm] Cr~ ~B~/~+~ = 1 " (9) 
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Solving Equation 9 for ~1 and writing ~ to re- 
place 6Bm~/3 for convenience, we obtain 

[ 7r3~m3Ern 3 lc~/6(a+l) 

o-1 = L3(i- .2 v--'~VmJ 

[ !6r__h/kT)______eexp__(Afm,/kr)] i/(~+i) (10) 
/ m q r n  ~+1 -}- Z i q i  a+l ] 

where 
o~ = (rr %n/kT) [9VmZ/(1 -- b'm2)2] 1/3 . (1 1) 
The value of cr 1 may be calculated from Equation 
10 if all the physical constants are known. It 
should be noted that 

. ~3') 'maEm 3_ 1 1/6 7r~lmE m I- 
3 (1  - " VmJ = L31: (1 - -  V l : " J  

in Equation 10 is approximately equal to the 
expression for theoretical strength of glass, 
derived from the Griffith-Orowan's criterion. In 
fact, it is the second factor in Equation 10 that 
gives the effects of loading rate, temperature, 
stress concentrations, and total number of 
molecules subjected to crack nucleation. 

We denote the fracture stress at q~ = 0 by e0, 
which corresponds to the fracture strength of the 
glass matrix. I f  Z m = A / I  m ~m at q~ = 0, 

7ra Tm 3 Em 3 ]e/6(~+l)  

~o = 3(1 - b'm2)2 VmJ 

[ ( 6 r h / k T ) e x p ( A f m , / k T )  ] 1/(~z+l) (12) 

A /[m ~m (-lm c*+l J 

We assume an intermediate phase exists as a 
spherical shell with thickness ~ around a particle 
with radius R. Let A be the surface area of the 
specimen, r the volume fraction of the dispersed 
phase, A the number of preferred nucleation sites 
per unit area and ~ the number of molecules 
which are concentrated in the neighbourhood of 
the apex of each nucleation site. From the 
geometrical considerations, the total number of 
molecules subjected to the nucleation per speci- 
men surface are 

Z m = [1 - (1 + SIR) 3 4] A A m ~m 
and 

Z~ = [(1 + 3/R) s - 1]() A A~ ~ ,  (13) 

respectively. Substitution of Equations 13 into 
Equation 5 leads to the rate of crack nucleation 
per specimen surface. Substituting Equations 13 
into Equation 10 and combining Equations 10 
and 12, one obtains 

~ 0 =  { 1 -  (1 + ~ ) ~ q ~ + [ ( I  + -3R)a -  1 ] 

Ai ~i qi ~+1 -1/(~+1) 

It may be considered that qi/qm > 1 and 
A i ~i/Am ~m > 1. Since the value of o~ calculated 
from Equation 11 is a large number (see Section 
3.1), (1 + 3/R)3(~ may be neglected in com- 
parison with other terms. Moreover, the thick- 
ness of the intermediate phase is assumed to be 
small in comparison with a particle radius, i.e., 
8/R ,4 1, as far as the chemical reaction 
between phases are not so remarkable. Equation 
14 is then simplified as 

2.3.4. High energy crack propagation process  

If  the average distance between particles is 
sufficiently larger, the micro-cracks formed by the 
crack-nucleation process may grow further and 
result in macroscopic fracture. On the other 
hand, when the average distance is smaller, the 
nucleated micro-cracks may cease to grow 
further after they have grown to the size of the 
average distance between particles, since the hard 
crystalline particles are assumed to prohibit the 
further crack propagation. In this case, the 
macroscopic fracture will occur through the high 
energy crack propagation process. 

According to Griffith's criterion, the required 
stress for propagation of a narrow crack of 
length 2c is given by (2},p Em/Tre) § Here, ~,p is 
the effective surface energy containing contribu- 
tions such as subsidiary cracking near the glass- 
crystal interface. So, }'v is expected to be larger 
than Ym" 

We denote the macroscopic stress-concentra- 
tion factor at the glass-crystal interface by Q; 
this is due to differences in elastic properties 
between matrix and dispersed phase. In the high- 
energy crack-propagation process the condition 
for the spreading of the micro-cracks round the 
dispersed particles can be expressed as 

Q e2 = (2yp Em/77"c) 1/2 (16) 
where e2 is the applied stress. The average length 
of the micro-cracks formed in the crack- 
nucleation process is equal to the mean free path 
between particles, which is given by Fullman 
[13] as 4R(1 - q~)/3q~. Then, 

e = 2R(1 - (})/3q~. (17) 
Substituting Equation 17 into Equation 16, we 
arrive at the expression for the fracture stress ~2 
in the high-energy crack-propagation process. 

cr~ = (1/Q)[37v E m (~/'fl" R(1 --  4 ) ]  1/2 . (18) 

Equation 18 is formally the same as Equation 2. 
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3. Discussion of the theory and 
comparison with published work 

3.1. Estimation of o~ 
The uncertainty in the choice of values for % and 
7m which appear in Equation I I makes it 
impossible to evaluate a value of e with accuracy. 
Nevertheless, we may obtain an order of 
magnitude for ~ from the following reasonable 
considerations. 

We assume that v m is the change in volume of 
one Si-O bond from the unfractured state to the 
fractured state and is approximately equal to a 
half of the volume occupied by the sphere with 
diameter of the bond distance. That is, since the 
Si-O bond distance is 1.62A, % may be estimated 
at about 1.11 x 10 .24 cm 3. The most important 
and difficult problem is the choice of the 7m 
value. The surface energy has long been a 
subject of controversy. The published values of 
the fracture surface energy range from 1000 to 
5000 ergs/cm 2, depending upon the various glass 
compositions and atmospheric conditions [14]. 

The linear relationship, ~ = 1.74 x 10 -2 7m 
may be obtained from Equation 11, if we take 
numerical values: T =  300K, v m = 0.20, 
k =  1.38 x 10 -x~ ergs/K, v m =  1.11 x 10 .24 
cm 3. The ~ value is found to be about 10 to 70 
for the range of 7m value from 600 to 4000 
ergs/cm ~. 

/ ( 2 )  

/ Curve (I) 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

! 
I 

I 
I 
I 
I 

Volume fr(xction of dispersed phase 

Figure 2 Schematic representation of the strength of 
glass-crystal composites. Curves (1) and (2) correspond 
to the crack-nucleation and crack-propagation process, 
respectively. 
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3.2. Theoretical strength-volume fraction 
curve 

Equations 15 and 18 can be schematically 
illustrated in Fig. 2, as a function of volume 
fraction of dispersed crystalline phase, corre- 
sponding to each of the fracture mechanisms: 
curve (1) from Equation 15 and curve (2) from 
Equation 18. In the region of lower volume 
fractions, the fracture strength decreases mono- 
tonically with volume fractions. In the region of 
higher volume fractions, however, prohibition of 
crack propagation occurs, and fracture strength 
increases with increasing volume fractions. 
Curves (1) and (2) intersect in a certain volume 
fraction, depending upon the grain size. The 
measured strength-volume fraction curve will, 
therefore, have a minimum near the point of 
intersection. 

3.2.1, Effect of particle size 
According to Equations 15 and 18, the effect of 
grain size on the strength is much more import- 
ant in Equation 18 than in Equation 15, since the 

value is larger than about 10 as shown in 
Section 3.1. So, the minimum will shift to lower 
volume fractions with smaller particle sizes, and 
the strength reduction is less with finer particles. 

3.2.2. Effect of macroscopic stress 
concentrations 

As indicated in Section 2.2, differences in elastic 
properties between matrix and dispersed phase 
lead to macroscopic stress concentrations around 
a dispersed particle, and the maximum stress 
concentrations occur on the perimeter of the 
inclusion. The combined stress-concentration 
factor in the intermediate phase, qi contains Q, 
the macroscopic stress-concentration factor at 
the glass-crystal interface. That is, qi/qm >-- Q. 
Under the same condition of microscopic stress 
concentrations, qdqm is proportional to Q. Fig. 3 
shows the effect of macroscopic stress concentra- 
tions. It is seen that the larger Q results in the 
more precipitous decrease in strength at the 
volume fraction closer to zero. 

3.3. Comparison of the theory with 
published work 

Hasselman and Fulrath [2, 3] carried out 
systematic measurements on the strength of 
glass-alumina composites free of internal stresses. 
They measured cross-bending strengths on a 
sodium borosilicate glass containing varying 
volume fractions of spheroidized alumina over a 
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Q I  

Q2 

i I I I 

i I i I 

I t,, / QI < Q 2  

I I  
I I  

/ 
Volume fraction of dispersed phcLse 

Figure 3 Effect of macroscopic stress concentrations on 
the strength of glass-crystal composites. 

wide range of particle sizes. Here, we will assess 
the conformity of  our theory with their experi- 
mental results a part  of  which are shown in 
Fig. 4. 

Let us evaluate an order of  magnitude of the 
exponent ~ from their data. Assuming that 
qi/qm > 1.4 (see Section 2.2), ZI i ~i//1 m ~m > 1, 
and ~ is an order of  micron or less, we find, 

unless r is extremely close to zero, the second 
term in the bracket of Equation 15 is much 
larger than unity, since the value of ~ estimated 
from Equation 11 is a large number. So the 
interpretation of the experimental results in the 
region of lower volume fractions where strength 
is reduced with increasing r may be carried out 
by the following equation, 

7, 
When cr 1 is plotted against q~ on logarithmic scale, 
linear relation should be obtained and its slope 
gives the value of - 1/co Fig. 5 shows the result 
of  the logarithmic plot. The measured values for 
R -- 30 and 25.5 gm were used, because the data 
in the region of lower volume fractions are 
available and because those which are on the far 
left of  the minimum in these curves are assumed 
to coincide with the curves due to crack- 
nucleation process. From the slope, ~ is estim- 
ated at the order of 14 to 18. This ~ value 
corresponds to about 1000 ergs/cm 2 for Ym (see 
Section 3.1), which is the same order as the 
fracture surface energy of glass reported in the 
literature [14]. 

xlO2k 

xlO2kg/cm 2 

20 ~,/R/7"5 tzm 

18 R=10'5 p.m 

16 / /R=12'5 Fm 

~c.14 /R=21 #m 
,m / ~ R =  30 Fm 
~12 / 

lO 

O0 O~'1 0"2 0"3 0"4 0"5 
Volume fr~ction of alumina 

Figure 4 Cross-bending strength of glass-alumina com- 
posites as a function of volume fraction of alumina 
(after Hasselman and Fulrath [2, 3]). 

o 
L 

Volume fraction of cdurnincL 

Figure 5 Logarithmic plot of thestrength of glass-alumina 
composites at lower volume fractions (Data from 
Hasselman and Fulrath [2, 3]). 

The region of higher volume fractions, 
situated on the far right of each minima in Fig. 4 
corresponds to the region where Hasselman and 
Fulrath obtained good conformity of  Equation 2 
with experimental results. In the same way, we 
can best fit Equation 18 to the data in this 
region. The value of the effective surface energy 
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7p calculated by fitting the theory to the data, is 
about 7800 and 4000 ergs/cm 2, if Q is taken as 
1.4 and 1.0, respectively. Q = 1.4 corresponds 
to the maximum stress-concentration factor in 
glass-alumina system. Under uniaxial stress 
conditions, however, the maximum stress con- 
centration due to differences in elastic properties 
acts at the two points only on the perimeter of a 
dispersed particle. Therefore Q = 1.4 may be 
overestimated. In any case, the value of yp 
calculated is several times higher than ~'m 
obtained from the crack-nucleation curve. This 
difference may be explained by the assumption 
that ~,p contains a relatively large amount of 
work required for subsidiary cracking that is 
necessary for further crack-propagation round 
the dispersed particles. But this assumption 
contains some ambiguity, and further examina- 
tion should be undertaken. 

xlO2kg/cm 2 18 /R=7"Sl~m 

16 / /R=t61~m 

1412 ~ R=3Otzm 

8 / t  /-/, ~-----~ 
I / / / / 

6 i i  i /  / /  
I / 1 I 

I i i / -  
4 t /  / 

I i i  I 
Ill~ l 

2 111 
fll 

o d.1 d-2 o'.3 o:4 o'.s Volume fraction of ct[umino. 

Figure 6 Comparison of the theory with the experimental 
data of Hasselman and Fulrath 12, 3]. 

Consequently the experimental results in Fig. 4 
can be interpreted as Fig. 6. The data for R = 
7.5, 16 and 30 gm were plotted. Since e is about 
18, the curves due to crack-nucleation process 
almost overlap in the range of considered 
particle sizes. Then, to avoid the confusion in the 
figure, only one curve for R = 30 gm is drawn 
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as the representative curve for crack-nucleation 
process. As seen from Fig. 6, it may be considered 
that the observed strength-volume fraction curve 
consists of two curves: the one due to crack- 
nucleation process and the other due to crack- 
propagation process. 

Hasselman and Fulrath have also measured 
the biaxial strength of the same glass containing 
alumina spheres with radius 20 gm [3, 12]. They 
found that the results for biaxial tensile strength, 
in contrast to the uniaxial strength results, 
showed a precipitous decline in strength on 
addition of the alumina phase. This difference in 
strength behaviour under the two stress condi- 
tions can be explained on the basis of the 
discussion in Section 3.2.2 (Fig. 3). Under 
biaxial stress conditions the maximum stress 
acts over the whole perimeter of the dispersed 
particle. In this case, the average value of Q may 
be estimated at about 1.4. On the contrary, under 
uniaxial stress conditions, the average value of Q 
may be much smaller than the maximum stress- 
concentration factor, 1.4, since the maximum 
stress acts at the two points only on the peri- 
meter. 

Equation 1 proposed by Hasselman and 
Fulrath gives a monotonical increasing function 
ofr  and does not explain the strength behaviour 
at lower volume fractions. They attributed this 
discrepancy to stress concentration due to 
differences in elastic properties of the two phases 
and interpreted qualitatively the particle size 
dependence of strength reduction in terms of the 
volume of material subjected to stress concentra- 
tion [3, 12]. Their attribution is reasonable in the 
sense that the macroscopic stress concentrations 
due to differences in elastic properties of the two 
phases have a considerable effect on fracture 
behaviour of the composite. But it seems that 
their interpretation is not fully sufficient for 
explaining the strength reduction depending 
upon particle size. Our theory containing the 
formulated expression based upon the nucleation 
theory, however, may lead to quantitative under- 
standing of this strength behaviour at lower 
volume fractions. 

4. Summary 
A theoretical approach was made to the 
mechanical strength of two-phase glass-crystal 
composites. Expressions were formulated for 
mechanical strength of such solids, based upon 
nucleation theory and Griffith's criterion. 
Comparison of our theory with published data 
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on the strength of glass-alumina composites may 
support our hypothesis that the fracture 
mechanisms are composed of the processes of 
crack nucleation and of crack propagation round 
the dispersed particles. The proposed theory can 
explain well the characteristic strength reduction 
accompanied with particle size dependence at 
lower volume fractions of dispersed phase. 

The present study is only applicable to the 
strength behaviour of glass-crystal composites 
free of internal stresses due to differences in 
thermal expansion coefficients of the two phases. 
Naturally, the effect of internal stresses on 
mechanical strength of the composites is very 
important, and further study is required. 

Appendix I 
The net work or free energy associated with the 
reversible formation of a circular crack of radius 
p may be written as 

A F  = 2rr p~ 7 - 8(1 - v 2) pa S ~ / 3 E .  

Here, 2~rp~ 7 is the work required for the 
reversible formation of the two surfaces of a 
circular crack, and - 8(1 - v 2) pa $ 2 / 3 E  is the 
decrease in the strain energy in the neighbour- 
hood of the crack, which has been shown by 
Sack [15]. 

The curve of A F  versus p has a maximum 

A F *  = ~r 3 78 E2/6(1 - v2) 2 S r 

for cracks with radius 
p* =TryE/2(1  - v 2) S 2. 

Appendix I I  

exp - 6(1 - v2) 2 kTq ~ ,~ + 2TkT] 
. . . . .  (A1) 

in Equation 7 is analytically impossible. But we 
can obtain roughly approximated integration in 
the following manner. 

The integral can be simplified by replacing the 
variable ~ with 

x = gq/[zr 3 y 3 E2/6(1 - v2) ~ ]s 1/4 

and by introducing the abbreviation 

B = ( v / 2 E  kT)[~v 3 y 3 E2/6(1 - v2) 2 k T ]  1/2 

Then, the integral A1 can be written as 

[ r r a y a E  ~ ]1/41 1 Bx2] d x  ' 
6(f-_-v2-~-kTj qI i~  exp [ -  ~ + 

. . . . .  (A2) 
where 

x~ = ,h  q/[~a y3 E2/6(1 _ v2)~ k T p / 4 .  

XB 213 
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- 2 ' O  

-4"O 

- 6 " 0  

- -  2_~t3Bx~t  

. . . .  ~t31%e(Bx6 ) . . . . . "  

o:2 ' 2 s to 2o s o  , o o  ' s & ;  " l ' & O  P1 

Figure A1 T h e  t e r m s  ( - 1 / x  4 q- B x  2) a n d  B z/3 log  e (Bx 6) as a f u n c t i o n  o f B x  G. 
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The term ( -  1/x  4 + B x  ~) is roughly approx- 
imated by B 2/a loge(Bx G) in the relatively wide 
range of x 6. For  comparison,  the calculated 
values of these two terms are represented as a 
funct ion  of B x  6 in Fig. A1. F r o m  the figure, it is 
seen that  B 2/3 loge(Bx 6) may be used instead of 
( -  1/x 4 + B x  2) in the range of 0.4 < B x  6 < 100 
which covers the stress range where crack 
nucleat ion may occur. 

Then,  the subst i tut ion of B ~/3 loge(Bx G) for 
( -  1/x  ~ + B x  2) leads to 

exp - x~ + B x  ~ ~_ (Bx6) B ~ .  

The integral in the expression A2 becomes 

~ i  ~ BB~I3xlSB2/3+l 
(Bx6) B~'" d x  = 6B 2/3 + 1 (A3) 

The calculated value for 6B 2/3 from the physical 
constants  is much  larger than unity, so we can 
approximately evaluate the integral A 1. 

exp - 6(1 -- v2) 2 k T q "  or" + 2--E--kTJ da  

"h"..3.3 ~ 3"E2 - ]l/4.!.t~B~/3,X.16B2/3+l 
- [6(1 - v2) = k r j  q 6B  =/3 + 1 

1 [ 7r~ 73 E 3 q~B~l~+l . 
6 L3(T - - v - ~  v ] - ~ / "  (cq / 
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